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Abstract—Internet switches become harder and costlier to
build for higher line rates and switch capacities. In-sequence
delivery of packets has traditionally been a constraint on switch
designs because TCP loss detection was considered vulnerable
to out-of-sequence arrivals. For this reason, extremely efficient
and simple designs, such as the Load Balanced Birkhoff-von
Neumann Switch, were considered impractical. However, we
reevaluate this constraint considering modern TCP implementa-
tions with loss detection algorithms like Recent Acknowledgment
(RACK) that are more resilient to out-of-order arrivals. In a set of
testbed experiments representative of wide area core networks,
we evaluated the performance of TCP flows traversing a load
balanced switch that reorders some packets within a flow. We
show that widely deployed and standard TCP implementations
of the last decade achieve similar performance when traversing a
load balanced switch as they do when there is no reordering. Fur-
thermore, we also verified that an increase in the line rate leads
to favorable conditions for time based loss detection methods,
such as the one used in RACK. Our results, if further validated,
suggest that switch designs that were previously thought to be
unsuitable can potentially be utilized, thanks to the relaxation of
the in-sequence delivery constraint.

Index Terms—TCP, Switching, packet reordering, dupthresh,
RACK

I. INTRODUCTION

The conventional wisdom in network engineering for the
last several decades was that routers and switches should,
whenever possible, avoid reordering packets within a flow.
This is because classical TCP inferred packet loss using a triple
duplicate acknowledgement (ACK) rule, which rendered it vul-
nerable to any alterations in the packet arrival order. A packet
that was delayed by more than 3 positions within its flow
would be erroneously marked as lost and trigger a recovery
response, typically causing unnecessary packet retransmissions
and unneeded congestion window (cwnd) reductions [1].

This has historically led to a stringent in-order delivery
requirement for all packet switch designs, either forcing more
complex designs, or requiring the incorporation of output
resequencing buffers [2], [3]. Many powerful switch designs
were considered impractical because they resulted in out-of-
order packet sequences [4]. As a motivating example, consider
the Load Balanced Birkhoff-von Neumann switch [5], an

This research was supported by the New York State Center for Advanced
Technology in Telecommunications and Distributed Systems (CATT), NYU
Wireless, the Cisco University Research Program Fund and by the National
Science Foundation (NSF) under Grant No. CNS-2148309 and OAC-2226408.

extremely simple, scalable and efficient architecture featuring
a load balancer that spread incoming packets into parallel
virtual output queues (VOQs) before the switching stage.
While the idea was masterly, the design resulted in packets that
belong to the same TCP flow to be spread into independent
parallel queues. As a result, these packets experienced different
wait times and potentially left the switch out-of-sequence. This
led to extensive work on ensuring in-sequence delivery for
this switch [6], [7]. Some modern switch architectures today
feature parallel paths for processing packets [8], yet they are
designed to bring packets back into sequence at the cost of
additional complexity and delay, explicitly motivated by the
effect of reordering on TCP.

However, two relevant aspects of the Internet related to
packet reordering have evolved in noteworthy ways.
Advanced loss detection algorithms that are resilient to
bounded amounts of reordering or delay variation ap-
peared and became widespread: The adoption of network
load balancing and multi-path routing approaches [9] and
emergence of lossy wireless links and link layer retrans-
missions [10], both of which increase the frequency with
which packets are reordered, led TCP developers to make
significant improvements on ways to differentiate real packet
loss from reordering by deploying new recovery algorithms
[11]. Two instances of advanced recovery algorithms appeared
and are widely deployed. These were dupthresh [12] with
an adaptive threshold heuristic (e.g. [13], [14]) and Recent
Acknowledgement (RACK) [15].

Adaptive versions of the dupthresh algorithm introduced
reactive ways to grow the duplicate ACK counting threshold to
accommodate bounded levels of packet reordering. RACK on
the other hand, diverged from previous protocols as it followed
a temporal approach that detected loss using the lateness
of individual packets while mostly disregarding the order in
which they were delivered. This temporal approach made
it possible for RACK to be able to accommodate reordered
packets without a reactive adaptation, given the delay variation
was bounded within short time frames.

Although RACK is used by default in modern Linux and
Windows systems, it is not well represented in the academic
literature. One recent paper [16] evaluates the performance of
RACK in comparison with the fixed threshold dupthresh for
artificially generated reordering patterns, but otherwise it has
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Fig. 1. Comparison of recovery algorithms when packet number 2 is delayed within its sequence. Green and purple boxes for the ordinal methods represent
the detection threshold and the current count for loss. The green line for the temporal approach represents the time threshold in use. Fixed threshold ordinal
approaches declare 2 as lost when the threshold is surpassed. Adaptive dupthresh uses SACKs to grow its threshold: The arrival of SACK 4, fills a ‘hole’ in
the sequence of ACKed packets and triggers a detection threshold update as described. Finally, RACK uses the time window to declare 2 as lost.

not been well studied. We suspect that as a consequence, the
academic literature studying packet reordering, network load
balancing and switching largely overlooks that the most widely
deployed TCP algorithms today are tolerant to some degree
of reordering, and continue to assume the widespread use of
the triple duplicate ACK rule.
Network capacities grew from tens of Mbps to hundreds
of Gbps: We noted that RACK uses a temporal method
that accommodates delay variations within short time frames.
Classical queuing theory suggests that, for an M/M/1 queuing
system, with the same utilization, an increase in the line rate
has an inverse relationship with the expected delay of a packet
[17]. We can also show that this also leads to a narrower delay
distribution. For a scenario with independent parallel queues,
such as in a load balancer, this means, as the line rate goes up,
it is more likely for packets in parallel queues to experience
delays that are smaller and therefore similar. Thus, the delay
spread of packets reordered by going through such a system
is likely to narrow as line rates increase.

These changes motivate us to reevaluate the assumption
that switch designs should deliver packets strictly in-sequence,
even at the cost of additional complexity. In this work,
we first consider the implications of the above mentioned
developments, especially in the context of the reordering
produced by a load balanced switch. Then, we conduct a
series of experiments on the CloudLab testbed [18] to evaluate
the performance of modern TCP loss detection algorithms
in an environment typical of a high-capacity core network
switch. The results indicate that under certain conditions, the
performance of TCP with RACK (the current default loss
detection protocol) through a load balanced switch is similar
to the performance of an equivalent switch without reordering.

This work suggests that the traditional wisdom of in-order
delivery requirements might be outdated, and demonstrates
that reordering produced by load balanced switches can be
much better tolerated at today’s high line rates thanks to the
use of time based approaches. Future work on characterization
and deeper understanding of reordering behavior may open
the door to new switch fabric designs that were previously
considered impractical for this reason. It can potentially have
similar implications for data center networks and wireless

communication protocols.
The rest of this paper is organised as follows: In Section

II we look at how TCP evolved in how it detects loss. In
Section III we consider the implications of increasing line rates
for Load Balanced Switches and their delay characteristics. In
Section IV we experimentally validate our expectations and in
Section V we discuss the results we obtained and comment
on the implications of our work and paths to future work.

II. THE EVOLUTION OF TCP LOSS DETECTION

While the literature on network switch design focused on
producing devices that delivered packets in-sequence with
the assumption that triple duplicate ACK algorithm was in
use, TCP implementations saw significant changes on how
reordering is handled. Recovery algorithms, charged with de-
tecting packet loss and maintaining a (re)transmit queue, were
decoupled from congestion control algorithms and developed
independently [11]. While the advancements in congestion
control are well-represented in the academic literature, there
is little published work on the developments in loss recovery.
In this section, we discuss the fundamental ideas behind these
new loss recovery algorithms (omitting some minor details of
the algorithms and heuristics in the implementations).

Widely deployed recovery algorithms, for until a decade
ago, were built on the original idea used by the triple du-
plicate ACK rule. They followed ordinal approaches [10]
that counted notifications of non-reception and assumed loss
in case this count exceeded a threshold. For the classical
triple duplicate ACK rule, the threshold was fixed to 3 and
cumulative ACKs (cumACK) were used for counting. In the
early 2000s, an algorithm widely referred to as dupthresh
extended the ACK counting idea with the use of Selective
Acknowledgements (SACK) [12]. In case there were ‘gaps’
in the sequence of received packets, SACKs allowed the
receiver to explicitly notify which segments were received
rather than sending repeated cumACKs. Adjusting to this new
information, dupthresh designated a segment s as lost, if more
than the threshold amount of segments were SACKed above
s.

Dupthresh with a fixed threshold, however, did not provide
extra protection from issues stemming from reordering. In real



implementations dupthresh was implemented with adaptive
threshold heuristics which were able to detect reordering and
adjust the threshold. These heuristics are generally built on
two premises: 1) If a flow experiences reordering, it is likely
to experience it again. 2) The extent of packet reordering is
likely to be comparable to the extent in the past. For example,
the Linux kernel detects the existence of reordering in case a
higher sequence is delivered (i.e. SACKed) before some lower
never-retransmitted sequence and uses the distance between
the highest SACKed segment and the highest cumulatively
ACKed segment as an estimate of the extent of reordering.
This distance value is then used as the new threshold value.
A comparison of the algorithms mentioned are provided in
Figure 1. Further details of adaptation heuristics are imple-
mentation specific [19] and will be omitted.

The ordinal approach to loss detection with adaptive thresh-
old heuristics has two shortcomings with respect to reordering
resilience: i) Adaptive threshold growth is reactive and requires
a number of iterations to accommodate the reordering extent,
making it a reordering-tolerant but not a resilient method. ii)
The adaptive threshold value is usually upper bounded (e.g.,
by 300 in Linux) since keeping large thresholds significantly
delays detection of actual loss. These limitations are partially
mitigated by a temporal approach, which we will discuss next.

Temporal approaches to loss recovery break away from the
notion of counting missing deliveries and instead function by
keeping a timer for each packet transmission. They designate
a packet as lost, in case it is not (S)ACKed within a window
of time. The practice of individually timing acknowledge-
ments implies that the order in which packets are received
is no longer relevant. Recent Acknowledgement (RACK) [15]
is a temporal loss detection algorithm which appeared in
mid-2010s and is now the default way to detect loss in
Linux and Windows [20]. RACK uses a time window called
rack_timeout which is calculated by the following relation
where both terms in the summation are dynamic.

rack_timeout = srtt+ reo_wnd (1)
where min_rtt/4 ≤ reo_wnd < srtt

srtt and min_rtt represent values of smoothed RTT and
the minimum RTT maintained by the kernel. srtt is a
quantity that averages the RTT at the time of transmission as
it is updated very frequently; min_rtt is the lowest round-
trip delay measured so far. reo_wnd is a variable controlled
by RACK which is set to its minimum value of min_rtt/4
by default. It is gradually grown only if the sender receives
Duplicate SACKs (DSACK) that are are explicit notifications
of unnecessarily retransmitted packets. Temporal approaches
are particularly powerful over the adaptive packet counting
approaches for the following reason: If reordering occurs
in core network switches with very high line rates, the
extent of reordering is likely to be very large in terms of
packet displacement, requiring a loss to be assumed and the
packet counting threshold to adapt in order to accommodate.
However, the same reordering is small in terms of delay
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Fig. 2. Load Balanced Switch of size N = 4

variation (we elaborate on this Section III), and would likely
be within the existing reo_wnd without requiring adaptation.
The adaptive reo_wnd growth mechanism is also deliberately
designed to be slow and is reset to its smallest value after
16 recovery episodes by the designers to make sure detection
of an actual loss is not significantly delayed. Therefore it is
desirable for any connection to have delay variation within
rack_timeout with the smallest value of reo_wnd.

Observe that rack_timeout is of the order of the RTT.
If we consider flows going through core switches located on a
backbone network, we can easily expect their RTTs to be on
the order of tens of milliseconds, if not larger due to queuing
delays experienced in access networks. On the other hand,
assume we have a switch architecture that produces reordering
on this path. If we can guarantee that delay variation produced
by this switch on consecutive packets of the same flow is much
smaller compared to the RTT, the switch is then likely to have
little to no impact on TCP performance when RACK is used.

III. IMPACT OF CORE NETWORK CAPACITY GROWTH ON
LOAD BALANCED SWITCHES

With this context of new TCP loss detection algorithms, and
especially the current temporal approach to loss detection, we
now seek to characterize the reordering that may be induced
in TCP flows by a load balanced switch.

As a motivating example, we consider the Load Balanced
Birkhoff-von Neumann (LB-BvN) Switch, a simple, scalable
and efficient switch architecture proposed by Chang et al. [5]
that does not require a scheduler. Its simplicity is especially
desirable for devices in core networks requiring extremely
fast operations. The architecture, as shown in Fig. 2, includes
two stages of crossbars that forward packets in round-robin
fashion, and virtual output queues (VOQ) in the middle stage.
The first stage uniformly spreads packets into the middle
stage achieving load balancing while the second stage achieves
switching. The middle stage contains VOQs for each output.

While the operation and performance metrics of the switch
is beyond the scope of this paper, the parallel VOQs in the
middle stage are key to the study of packet reordering. The
fact that consecutive packets from the same flow from input
i to output j are assigned to independent queues by the
load balancing stage and experience different queuing delays
creates a potential for packet reordering that could undermine



TCP performance using the triple duplicate ACK rule. The
extent of potential reordering and its mitigation by using
properly sized output resequencing buffers was studied in [21].

However, if we consider a temporal recovery algorithm such
as RACK, then the TCP performance would be determined
by the variation of wait times of consecutive packets of the
same flow at the individual parallel queues. As discussed
earlier, if the variation of the delays caused by the load
balancing stage is small enough compared to the total end-to-
end RTT, the impact on the performance of TCP employing
RACK will be negligible. The fact that backbone network line
rates increased significantly provides a favorable condition for
temporal methods as this has an impact on the probability
distribution of total wait time experienced at the middle stage
VOQs. Let us review how delays through the switch are
affected by line rate according to queueing theory.
Mean Delay of a Queuing System: The performance results
for the M/M/1 queue suggest that increasing both arrival
and service rates by scaling them up by a factor K, that is
increasing the line rate while keeping the utilization constant,
results in the same average queue occupancy distribution.
However, it causes the average wait time to be scaled down
by a factor of K.
Tail Delay of an M/M/1 Queue: For an M/M/1 queue, let
W be the random variable capturing the total wait time of a
packet through the system. The tail probability of W can be
expressed with the following relation where λ and µ are the
arrival and services rates [17]. If we consider a line speedup
by a factor of K over arrival and service rates for base line
rates, λ0 and µ0, we get.

P (W ≥ τ) = e−(µ−λ)τ = e−K(µ0−λ0)τ (2)

Thus increasing the line rate K, also compresses the queue
delay tail distribution by a factor of K.
Implication for Parallel VOQs: Assume we have a load
balancer as in Fig. 2 that uniformly spreads all arrivals for
the jth output into N parallel VOQs working at 1/N times
a line rate K times the base line rate. Let us simply model
the jth VOQs using independent and identical M/M/1 queues,
each with total delay Wi:

P (Wi ≥ τ) = e−
K
N (µ0−λ0)τ , i ∈ {1, 2, · · · , N} (3)

Assume that a burst of N packets destined to the same output
arrive at a given time and that they are all placed in N separate
VOQs. In that case, the delay experienced by the last packet
to leave can be expressed as Y = max{W1,W2, · · · ,WN}.
Y can be computed as:

P (Y < τ) = P (W1 < τ,W2 < τ, · · · ,WN < τ) (4)

=

N∏
i=1

P (Wi < τ) (5)

= (1− e−
K
N (µ0−λ0)τ )N (6)

where (5) follows from independence. Rearranging terms, we
can obtain the following expression that describes the time

window τ̂ needed so that of all packets complete service within
τ̂ with probability p.

τ̂ = −Nln(1− N
√
p)

K(µ0 − λ0)
(7)

We can see that a K-fold increase in the line rate leads to a
K times smaller time window τ̂ , as compared to the base line
rate, for the now randomly ordered burst to leave the switch
with the same probability p. At speeds of hundreds of Gbps
that are seen today in core networks, this model suggests,
the resulting delay variation spread would shrink compared to
the aggregate end to end propagation, processing and other
queuing delays incurred by the packets.

Note that this analytical argument assumes a packet arrival
process that is independent of the delay or reordering en-
countered at the switch. In reality, TCP produces closed loop
traffic that depends on both packet reordering and delay. The
arrival process, further, will deviate from a Poisson process,
depending in part on the number of flows it is interleaved
with. This, therefore, requires an experimental validation of
the result we derived using classical M/M/1 systems.

IV. EXPERIMENTAL VALIDATION

To evaluate the performance of current TCP implementa-
tions when flows traverse a load balanced switch, we designed
and executed a sequence of experiments on the CloudLab [18]
testbed. In this section, we describe in detail our experimental
evaluation and its results. We also make available1 all of the
experimental artifacts necessary (including resource profile,
source code for experiment execution and data analysis, and
other materials) so that others may reproduce our results.

A. Experiment setup

Topology: Our experiment topology, as realized on real bare
metal servers and Ethernet links on CloudLab, is illustrated in
Fig. 3. The direction of data flow, as shown in the diagram,
is from the bottom toward the top of the topology. In the
bottom-most level (green-shaded area in diagram), flows are
generated at twelve end hosts. Next, these flows are mixed
at a sequence of intermediate routers (purple-shaded area in
diagram). The last router along the path (red-shaded area in
diagram) represents the switch where we evaluate the impact
of load balancing; on leaving this router, depending on their
destination, data flows may traverse an egress interface with
8 parallel queues, or an egress interface with 1 queue. Finally
(blue-shaded area in diagram), two more hosts serve as the
endpoints for flows traversing the router’s 8 queue interface
and 1 queue interface, respectively.

Base delay: To represent an Internet scenario where flows
experience some base delay (besides queuing delay), we set
a static delay of T = 20ms for all flows by using netem to
add T/4 to each interface on the reverse path of data flow.

TCP endpoints: The hosts representing TCP endpoints,
shown as h0-h11, s0, and s1 in Fig. 3, are bare-metal

1All of the experiment materials are available in the following repository:
http://github.com/ufukusubutun/Reordering_Switch.
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Fig. 3. Details of our experiment setup, including (a) an overview of the experiment topology, and (b) an illustration of the two alternative realizations of
parallel queues used in the experiment.

servers running Ubuntu 20.04 with Linux Kernel v5.4, using
the TCP CUBIC congestion control algorithm. Depending on
the experiment, we configure these to use one of the three
of the loss detection algorithms described in Section II -
either dupthresh with a fixed threshold of 3, dupthresh with
an adaptive threshold, or RACK.

Main router: The router that is the main object of this study
is a bare metal server running Ubuntu 20.04, and forwards
data flows to s0 and s1 through two egress interfaces. The
interface that forwards traffic to s1 has a single FIFO queue,
with a service rate of C and buffer size of 2 BDP, i.e. 2T ×C.
The interface that forwards traffic to s0 has N = 8 parallel
queues. In the load balanced (LB) configuration (which we
realize using iptables with tc-htb), each of the parallel
queues has a buffer size of 2 BDP/N , and each arriving
packet is placed randomly into one of the queues, with uniform
probability. In the non-load balanced (non-LB) configuration
(which uses tc-fq), flows are hashed to queues so that
packets belonging to the same flow will always be placed in
the same queue, and the total queue size is limited to 2 BDP .
The two configurations are illustrated in Fig. 3. In either case,
queues are served on a round robin schedule with a quantum
size of two full-sized packets, and total service rate C.

Intermediate routers for mixing: The intermediate routers
where flows are mixed are realized as bare-metal servers
running Ubuntu 18.04, with IPv4 forwarding enabled and static
routing rules to forward traffic flows toward either s0 or
s1. On each of these, the egress interface is a FIFO queue
with a service rate of 5C/3, and a buffer size of 2 BDP, i.e.
2T × 5C/3.

Flow generation: To represent realistic Internet traffic, flow
generating processes at h0 through h11 continuously generate
TCP traffic to either s0 or s1 using iperf3, with a random
flow size sampled from a wide area network TCP traffic
model [22]. Half of the generators connect to s0 and the
other half to s1. To decouple the network utilization from
the behavior of the TCP loss detection protocol (which affects
flow completion time), the time from the start of one flow to
the start of the next flow is random, with a mean wait time that

is scaled with respect to the bottleneck line rate C in order to
avoid overlapping flows in the same flow generating process.
To scale the level of traffic in the network, we vary F , the
number of flow generating processes at each host endpoint.

Measurement and data analysis: We capture packet head-
ers at each ingress/egress interface of the main router. By
analyzing the traces and matching individual packets at ingress
and egress, we can compute flow-level statistics including flow
completion time and retransmission ratio, as well as packet
level statistics such as per-packet delay through the switch and
reordering metrics. We use the metrics called displacement and
reordering density as defined in [23] to measure reordering.
The displacement metric captures packet level displacement
of each segment by comparing the sequences entering and
leaving the system. If segments A,B,C,D enter the switch
where D enters last and they leave the switch with the order
A,D,B,C, the corresponding displacements d(·) for each
packet are d(A) = 0, d(B) = 1, d(C) = 1 and d(D) = −2.
If a packet arrives in the correct order, its displacement would
be 0, it would be negative if it arrives early, and positive if it
arrives late. We are interested in late arrivals, as those are the
packets that trigger a recovery response. The reorder density
metric is a discrete probability distribution of frequency of
packets with respect to their displacements. We calculate the
displacement of each packet within the same TCP flow and
then calculate the reordering density.

B. Results

In the series of experiments we present here, we aim to
evaluate the effect of reordering produced by the load balancer
as a function of line rate. We therefore ran experiments at
different line rates C ∈ {1, 2, 4.5} Gbps while keeping the
number of flow generators fixed at F = 150. Our experiments
only go up to C = 4.5 Gbps as this is the highest line
rate at which we can reliably capture packet headers on
this experiment infrastructure. In Fig 4(a-d)&(f) we present
the flow completion time and the ratio of retransmissions
to all transmissions as CDFs over all flows larger than 1
MB for all algorithms. For better visual representation of the



results, we only show long flows as shorter flows were not
affected by significant packet reordering and did not suffer
the effects of reordering on TCP. The results are labeled as
RACK, adapThresh and 3Thresh for RACK, dupthresh with an
adaptive threshold and dupthresh with a fixed threshold of 3,
respectively. Furthermore, each plot shows results when the
main router is in the load balanced (LB) configuration and
when it is in the non-load balanced (non-LB) configuration.
During the experiments, use of C = 1, 2 and 4.5 Gbps with
F = 150 flow generators resulted in average link utilizations
of approximately (51±4)% at the emulated switch output for
all scenarios. Due to the closed loop nature of TCP it is not
possible to generate an exact target utilization, because flow
completion times and retransmissions affect link utilization.
For meaningful comparison across line rates, we choose to
compare the case of an equal number of flow generators that
follow the same flow size trace, while the experiment duration
is scaled inversely proportional to the line rate. This allows us
to test the same flow trace over different line rates.

In Fig 4(a-d)&(f), observe that all three algorithms do
equally well when the non-LB configuration is in use, that
is when there is no reordering in the network. However, there
are significant differences in how the algorithms perform in
the LB configuration. We see that RACK achieves a perfor-
mance comparable with non-reordered flows as the line rate
is increased, and is only modestly inferior at the lower line
rates of 1 Gbps. adapThresh is somewhat inferior to RACK
in the LB scenario, with 3Thresh showing significantly worse
performance. The results also show a significant performance
improvement when using current methods over the classical
fixed threshold of 3. For the case of C = 4.5 Gbps under
the LB configuration, the median flow completion time of
3Thresh is 1.59 times that of RACK. This is strongly related
to the fact that the median flow running 3Thresh experiences
approximately 189 times the retransmission ratio of RACK (see
Fig. 4(f)).

In Fig 4(e) we show the distribution of delay experienced
by packets traversing the switch for different line rates when
RACK was in use with the LB configuration. In line with our
expectations, the delay distribution of packets traversing the
switch shrinks with the line rate. Given that the minimum
delay in these experiments was T = 20 ms, 76%, 84% and
99% of packets, experienced shorter delays than the value
of min_rtt/4 = 5 ms for 1, 2 and 4.5 Gbps scenarios
respectively when RACK was used under the LB configuration.
This quantity is important as it means a higher percentage
of packets are expected to arrive within the time window of
rack_timeout as the line rate increases.

The TCP performance in the experiments was determined as
a result of the interaction between the arrival rate, reordering
and loss detection. The arrival rate to the load balancer
determines the extent of reordering produced by the system,
the degree of reordering in turn determines the outcome
of TCP loss detection, and the loss detection mechanism
determines the arrival rate through TCP congestion control
and retransmissions. Changing the loss detection algorithm,

TABLE I
REORDERING DENSITY DISTRIBUTION WITHIN TCP FLOWS AND
RESULTING LINK UTILIZATION FOR C = 4.5 GBPS AND F = 150

Algorithm RD > 0 RD > 3 RD > 30 RD > 300 Link Util.
RACK 32.81% 22.90% 6.32% 0.05% 47.2%

adapThresh 34.49% 23.75% 7.29% 0.10% 47.9%
3Thresh 33.26% 22.46% 5.77% 0.04% 54.7%

therefore, changes the extent of reordering. In Table I, we
present statistics of reordering density (RD), as defined in
the previous section, and the average utilization of the link
connecting the main router to s0, for the LB configuration
at C = 4.5 Gbps as an example. The RD measurements
allow us to characterize the observed reordering pattern by
quantizing the percentage of packets that arrived 3, 30 or 300
positions later than their correct orders within their flows. The
high utilization for 3Thresh is likely due to a high number of
retransmissions (see Fig. 4(f))

V. DISCUSSION AND FUTURE WORK

Do switches still have to deliver packets in sequence? Our
results suggest that the resilience of TCP recovery algorithms,
especially of time-based RACK, to patterns of reordering
produced by a load balanced switch increases with the line
rate. The results in Section IV-B suggest that under typical
conditions for a core network switch today, the performance
of TCP using RACK loss detection with reordering due to
load balancing is similar to the performance of TCP with tra-
ditional loss detection without reordering. This also validates
our suggestion that the conventional wisdom regarding load
balanced switch architectures needs to be revisited in light of
recent advances in TCP loss detection. It would be interesting
to investigate the behavior at higher, more realistic line rates
and in cases where multiple reordering switches are traversed.
Alterations to our experiment methodology can enable testing
of both. We also intend to approach the problem analytically.

These findings open the door to multiple future research
directions: It is important to consider how low delay variants
such as TCP BBR would behave under packet reordering. Im-
plementations of QUIC are also expected to use mechanisms
similar to adaptive dupthresh and RACK [24]. Our insight,
therefore, could potentially also hold for QUIC. Finally, our
findings might have implications for data center networks,
wireless communication protocols for multi-RAT (multiple
Radio Access Technologies) networks and mobile ad hoc
networks, in all of which packet reordering may also be
encountered.
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